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Abstract

This analysis applies to a quasi-neutral region of uniformly

doped semiconductor material. The objective is to solve for the

current density in terms of the carrier density and the electric

potential boundary values. It is shown that the combined effects

of drift and diffusion can be calculated by assuming the current

density to obey Ohm's law, but with modified electric potential

boundary values.
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i. Introduction

Some problems involving carrier transport in a semiconductor

can be solved by hand calculations. A particular case occurs when

the geometry and boundary values are simple, potential drops are

somehow known, and excess charge carriers are produced in high

density (e.g., by an energetic heavy ion). This problem is simple

because the carrier density is governed by the ambipolar diffu-

sion equation (discussed in section 2), which contains only one

unknown function and is solvable (by hand calculation) for suffi-

ciently simple geometries. However, as pointed out in section 2,

ambipolar diffusion describes only the carrier density function,

not carrier flow. To solve for the current, additional analysis

is needed and the required additional analysis is the subject of

this publication. It will be shown that the remaining analysis is

very similar to V = I R. Under certain conditions, called strong

conduction (defined in section 7), the remaining analysis liter-

ally is V = I R.

This method of analyzing carrier transport is not new. In

previous work (e.g., Ref. I), the carrier density was assumed to

be governed by ambipolar diffusion, for the purpose of calculat-

ing R, and then V = I R was used to calculate current. Although

this method has been used in the past, theoretical justification

was not given. This publication gives the theoretical justifica-

tion applicable to strong conduction and shows how the method

should be modified for weak conduction (defined in section 7). A



few cylindrically symmetric problems involving ion tracks were

solved by combining the analysis given here with the assumption

of ambipolar diffusion and the results agreed well with predic-

tions from the cylindrical coordinate version of PISCES.

The current density in a quasi-neutral region of uniformly

doped semiconductor material is analyzed. Junctions and other

structures are represented by boundary conditions, and the objec-

tive is to relate current density to the boundary conditions.

Such a relationship is an equation of state for the "device" (the

quasi-neutral region) analogous to V = I R for a lumped resistor.

It will be seen that the relationship is not only analogous to,

but also very similar to V = I R.

2. Review

For reference convenience, it is helpful to have some familiar

results handy. Therefore, a brief review is given. The reader

should consult any standard textbook for a more thorough discus-

sion. Some symbols are defined below:

no, Po = equilibrium electron and hole densities, respectively.

N, P = excess electron and hole densities, respectively.

Dn,D p =diffusion constants for electrons and holes, respectively.

_n, _p = mobilities for electrons and holes, respectively.

T = carrier lifetime (assumed the same for electrons as holes).



VT = thermal voltage (about 0.026 volts at room temperature).

q = elementary charge.

Jn, Jp = electron and hole current densities, respectively.

U = electric potential.

E = dielectric constant.

Throughout this publication, equilibrium carrier densities,

diffusion constants, mobilities, and carrier lifetime are treated

as constants. Also, D = V T _ for electrons and holes.

The governing equations are:

Jp = q Dp [-grad P - (P + po ) grad U/VT]

Jn = q Dn [grad N - (N + no) grad U/VT]

div Jp = -q (llr + 616t) P

div Jn = q (1/7 + 6/6t) N

-4 div grad U = q (P - N). (i)

The standard quasi-neutral approximation is obtained by regard-

ing c as sufficiently small compared to other relevant constants

so that the solutions to the equations can be approximated by the

solutions obtained in the limiting case as c approaches zero. In

this limit, (i) becomes P = N and substituting into the other



equations gives

Jp = q Dp [-grad P - (P + po ) grad U/VT] (2a)

Jn = q Dn [grad P - (P + no) grad U/VT] (2b)

div grad P + grad P • grad U/V T + (P + po ) div grad U/V T

= (1/7 + 6/6t) P/Dp (3a)

div grad P - grad P • grad U/V T - (P + no) div grad U/V T

= (I/T + 6/6t) P/D n . (3b)

In this limit, (i) is replaced with P = N and cannot be used to

solve for U, but (3) is a closed system of equations and is used

to solve for both P and U.

At high injection levels, the equations in (3) can be combined

to produce the ambipolar equation

div grad P = (I/T + 6/6t) P/D* [P >> max(no, po)] (4)

where the ambipolar diffusion constant, D*, is given by

l/D* = (i/Dp + I/Dn)/2 . (5)

The ambipolar condition (4) is not needed in the theory to

follow, but it does help to make the problem more solvable, as



discussed later, and applies to some important situations. A few

statements should be made to clear up a misconception regarding

ambipolar diffusion. Some people visualize the process as one in

which the carriers interact strongly with each other, through

their own fields, and their motion does not respond to applied

fields. In reality, it is only the carrier density function that

does not respond to applied fields; carrier flow is very respon-

sive (this will be seen in the Ohmic model derived later). Note

that it is possible to have a large flow and still have the

density change slowly (characteristic of ambipolar diffusion) if

the flow has a small divergence (physically, a small divergence

means that carriers moving out of a volume element are replaced

by other carriers moving in). Therefore, it is possible for the

flow to respond strongly to applied fields, while the density

does not. Furthermore, electrons and holes are not required to

move together to avoid charge separation, as some people think.

They can move very differently and still avoid charge separation

as long as the total (electron plus hole) current has a zero

divergence. This situation (electrons moving differently than

holes) can occur unless prohibited by boundary conditions or by

extreme symmetry (e.g., spherical symmetry), where specifying the

divergence of a vector field uniquely determines the vector

field. Although the phrase does not sound like it, "ambipolar

diffusion" describes only the carrier density function, not

carrier flow.
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3. Solving for Potential in Terms of Carrier Density

Suppose P was somehow known and we want to solve for U in terms

of P. If the exact P was known [in this context, "exact" means

exactly satisfies (3)], either equation in (3) or any linear

combination of the equations could be used (if we knew how to

solve it) and the same solution for U will result. But suppose

some approximation is used for P that is not exactly consistent

with (3). In this case, different linear combinations of (3) can

produce different solutions for U, and some can be better than

others in the sense that errors in U are less sensitive to errors

in P. For example, if the equations in (3) are added, we get

(Po - no) div grad U/2V T = (I/T + 6/6t) P/D* - div grad P. (6)

If the approximation (4) is used, the result is

div grad U = O.

The problem here is that while the right side of (6) is small in

some sense when the approximation (4) applies, the coefficient to

U on the left side of (6) is also small (compared to P) and

dividing by this coefficient to solve for U can produce large

errors.

Because some equations are better than others, it is natural to

look for the best equation. Determination of the best equation



requires a lengthy analysis involving norms and/or variations,

but a good equation is easy to identify. In a good equation, the

coefficient of U will contain P in order to avoid the problem

produced by (6). The coefficient should also contain at least the

majority carrier equilibrium density. This is obviously needed

for low injection-level conditions, but it might also be needed

for high injection-level conditions. The reason is that U is

strongly influenced by boundary conditions and, unless

P>>max(no,Po ) everywhere, this influence may propagate through

regions of low injection levels. Boundary conditions cannot be

properly built into the solution unless the governing equation is

valid all of the way to the boundary surface.

One equation derivable from (3) and having all of the required

properties is the linear combination

div JT = 0 (7)

where

JT = Jn + Jp " (s)

Equation (7) can also be written as

(P + A) div grad U/V T + grad P • grad U/V T = B div grad P (9)

where

7



A = (Dp Po + Dn no)/(Dn + Dp)

= (_p Po + _n no)/(_n + _p)
(10)

B = (D n - Dp)/(D n + Dp) = (_n - _p)/(_n + Pp)
(11)

4. Solution for U in Terms of U H and P

The objective of this section is to solve for U in terms of P

and another function, UH, defined later, subject to boundary

conditions.

The boundary surface is partitioned into two sections, AIN s and

AOT H. AIN S is the union of all insulated sections (JT has zero

normal component) and AOT H is the union of all other sections.

Boundary conditions for U are taken to be of the Dirichlet type

on AOT H, i.e.,

U(x,t) = v(x,t) on AOT H (12)

for some boundary value function v. By combining (2) and (8) with

the condition that JT has a zero normal component on AINS, we

have

grad U/V T • n = B grad P • n/(P + A) on AIN S (13)

where n is the normal unit vector.



Note that U can be expressed as the sum of any particular

solution, Up, to (9) plus an appropriate solution, UH, to the

homogeneous equation

(P + A) div grad UH/V T + grad P • grad UH/V T = 0 . (14)

One particular solution, which can be verified by substitution,

is

Up/V T = B in[(P + A)/A] (15)

Therefore

U = U H + Up (16)

where U H satisfies (14) and some appropriate boundary conditions.

Evaluating (16) on AOT H and AIN s while using (13) gives

U H = v - B V T in[(P + A)/A] on AOT H (17)

grad U H • n = 0 on AIN S . (18)



5. Expressinq JT in Terms of U H

Combining (2), (8), (i0) and (11) gives

JT = q (Dn + Dp) [B grad P - (P + A) grad U/VT]

and using (15) and (16) gives

JT = - q [Dn (p + no) + Dp (P + po)] grad UH/V T (19)

6. The Ohmic Model

The governing equations can be written as

U H = v - B V T in[(P + A)/A] on AOT H (20)

grad UH • n = 0 on AIN S (21)

div (a grad UH) = 0 on interior (22)

JT = - c grad U H (23)

where a is given by

a = q [_n (P + no) + _p (P + Po )] (24)

I0



Now suppose the medium was not a semiconductor, but instead an

Ohmic material (i.e., it satisfies Ohm's law) with conductivity

o, but with the applied voltage on the boundary given by the

right side of (20) instead of v. To solve for the current, we

would solve precisely the same equations (20) through (23).

Therefore, to solve for the current in a uniformly doped quasi-

neutral semiconductor, including both drift and diffusion, we can

pretend that it is an Ohmic material, but modify the boundary

conditions by including the logarithmic term in (20). The system

of equations, (20) through (24), will be called the Ohmic model.

Note that the ambipolar condition, (4), is not needed and the

equations are equally valid for low, medium, and high injection-

level conditions. But, unless the ambipolar equation applies (or

P is given or can be solved some other way), UH and P must be

treated as simultaneous unknowns. If the ambipolar equation

applies, P can be solved first, and then U H. Another solvable

problem consists of low injection-level conditions, so that a can

be treated as a constant and P shows up only in the boundary

condition, (20), and does not have to be solved in the interior.

Such a problem can be solved for U H and JT, but to solve for Jn

or Jp it is still necessary to solve for P because it is neces-

sary to solve for U.

The Ohmic model can be expressed in integrated form for two

terminal structures when U and P are both constant on both termi-

nals. Let AOT H consist of two parts, A 1 and A2, and let v=V 1 on

ii



A1 and v=V 2 on A2, where V1 and V2 are constant in x. Let

P(x,t)=P 1 on A1 and P(x,t)=P 2 on A2, where P1 and P2 are also

constant in x. The integrated form of (20) through (24) is

delta U H = I R (25)

where I is the total current integrated over either A 1 or A2, R

is the total resistance calculated in terms of the conductivity

as if the medium were Ohmic, and

delta U H = V 2 - V 1 + B V T in[(P 1 + A)/(P 2 + A)] (26)

7. Weak and Strong Conduction

A two terminal structure will be called strongly conducting if

the logarithmic term in (26) can be neglected. Otherwise, it

will be called weakly conducting. A strong conduction problem

most closely resembles a conventional Ohmic problem because even

the boundary conditions do not need to be modified.

Weak conduction implies that diffusion is an important mode of

charge transport, but strong conduction does not imply that

diffusion is unimportant. For example, if A 1 and A 2 are metallic

contacts (sinks for excess carriers), the logarithmic term is

zero. However, a large diffusion current can still occur if a

large excess carrier density exists (e.g., via photon absorption)

12



in the medium. Strong conduction implies that U and UH satisfy

the same boundary conditions on A1 and A2, but they need not be

equal (and, therefore, total current need not equal conduction

current) because they do not satisfy the same equation on the

interior. UH satisfies (22), but U does not. In particular, it is

not permissible to replace grad UH with grad U in (23) because

the two quantities can be significantly different. During strong

conduction, U cannot be substituted for U H indiscriminately, but

the substitution can be made in the integrated equation (25).

An example of strong conduction is a typical funneling process.

In such a process, an ion track partially, or completely, shorts

a junction so that some, or all, of the power supply voltage

(used to reverse bias the junction) is dropped across the device

substrate. The electron mobility in silicon is roughly twice the

hole mobility, so B is roughly one third. Assuming the substrate

doping is at least i015/cm3 and the maximum carrier density in

the ion track does not exceed I020/cm3, the logarithmic term in

(26) is less than or equal to about 4 V T or about one tenth of a

volt. If the potential drop across the substrate is at least one

volt, neglecting the logarithmic term will produce less than 10%

error in the boundary values for U H. To the extent that R can be

solved exactly, the calculated current will also have less than

10% error.

13



8. Some Simple Implications

It is interesting to look at some simple special cases to

verify that familiar equations can be retrieved from the Ohmic

model.

In the first example, A 1 is an electrode contact and A 2 is a

highly reverse-biased junction which acts like a sink for minori-

ty carriers. Suppose there is an excess of carriers somewhere in

the substrate via initial conditions or irradiation and the

objective is to calculate the total current that flows into the

junction (sink). We are not told the potential boundary values,

but we are told that there is virtually no majority current at

the junction (implying no injection from the other side). The

potential boundary values will be whatever it takes to block the

majority carrier current at A 2. To be definite, suppose the

material is n type. To determine the boundary conditions from the

given information, that Jn=0 on A2, use (2b) to get

(P + no) grad U/V T = grad P on A 2

and (15) and (16) give

n o grad UH/V T = (Dp/Dn) grad P on A 2

where we have used P2=0. It is more accurate to use P2=-Po , but

14



the error in the calculated current is on the order of the re-

verse saturation current which is neglected in this analysis.

Combining the above result with (23) gives

JT = - q Dp grad P on A 2

which is the same result obtained from a more elementary analysis

that simply looks at the minority carrier diffusion current.

In the next example, A 1 and A 2 are metallic contacts (sinks for

excess carriers, i.e., PI=P2=0), and are both grounded (Vl=V2=0),

but there may be an excess carrier density in the interior (e.g.,

through irradiation). These conditions imply that there is no U H

drop across the device. The conclusion, from (25), is I=0. The

physical explanation is that electric fields were set up to

produce drift currents in opposition to the diffusion currents.

In the last example, the circuit is open (I=0). From (25) and

(26) we conclude that the right side of (26) is zero. For low

injection levels, a first-order approximation for the logarithm

gives

V2 - Vl = VT (P2 - Pl ) (D n - Dp)/(Dp Po + Dn no)

which is the Dember potential for low injection levels [2]. This

result is not new, but note how easily it can be derived from the

Ohmic model.

15



9. Terminal Voltaqe and Current

The potentials and current in (25) refer to the medium, or

substrate, side of the surfaces or contacts A 1 and A 2. If the

capacitance between A 1 and A 2 is significant, it is necessary to

make a distinction between the substrate current, I, and the

terminal current, I T (the current through the lead to the sub-

strate contact). These currents can be different because of a

changing surface charge density at the contacts. An easy way to

deal with this is to represent the substrate with a parallel

resistor and capacitor depicting the capacitance between A 1 and

A 2 •

There may be an equilibrium contact potential between the

contacts and substrate, so that the potential difference across

the substrate is not equal to the terminal voltage. The terminal

voltage can be represented by including voltage sources, repre-

senting equilibrium contact potentials, in the equivalent cir-

cuit. Under equilibrium conditions these potentials subtract out,

but may not do so under non-equilibrium conditions. For example,

if A 1 is a metallic electrode and A 2 is a p-n junction, an ideal

voltage source might represent the contact potential at AI; but

at A 2 it is better to use a charged capacitor (combined with some

other circuit elements needed to give a more complete representa-

tion of a p-n junction). In equilibrium, the capacitor voltage

balances with the voltage source at AI, so that neither is visi-

16



ble to the outside world. However, if the capacitor discharges

(e.g., through photoelectrons and holes), the contact potential

at A1 can be seen at the device terminals. Including contact

potential is an alternative to making a distinction between

actual and applied potential. When contact potentials are includ-

ed, U is the actual potential.

i0. Accuracy of the Ohmic Model

The Ohmic model is an exact result of eqs. (2) and (3), which,

in turn, are derived from the assumption of quasi-neutrality. The

validity of this approximation is discussed by a number of inves-

tigators (e.g., Refs. 2, 3, and 4) and, therefore, need not be

discussed in detail here. The equations are expected to be accu-

rate for the uniformly doped quasi-neutral regions of typical

silicon devices.

In a practical application, the Ohmic model is likely to be

supplemented with an additional approximation (e.g., the ambipo-

lar diffusion equation), so that the carrier density can be

treated as known--this is an alternative to supplementing (20)

through (24) with another equation, taken from (3), and solving

simultaneous equations. It is left up to the investigator to

determine the suitability, for the application, of any additional

approximations.
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ii. Conclusion

The analysis applies to a quasi-neutral region of uniformly

doped semiconductor material and shows that the total current can

be solved by assuming the current density to obey Ohm's law, but

with the boundary conditions modified by including the logarith-

mic term in (20).
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